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SUMMARY 

Interpretive methods for the optimization of the selectivity in chromatography 
require the description of the retention surfaces of all individual solutes in a mixture 
by some kind of model. The requirements and availability of such models are dis- 
cussed for the particular case of optimizing ternary and quaternary mobile phase 
compositions in reversed-phase liquid chromatography. 

It is concluded that in order to allow an adequate prediction of the optimal 
conditions, a model equation should describe the experimental data to within 1% or 
less (in terms of the capacity factor k). Several suggested models from the literature 
were tried, but it appears that none of the currently available models provides a 
description of the data with the required accuracy. It is demonstrated that this situa- 
tion does not improve when more experimental data become available. 

The alternative of using piecewise (linear) interpolation is discussed, and it is 
demonstrated that this approach may provide a sufficiently accurate description of 
the data on the basis of a limited number of carefully selected experiments. 

INTRODUCTION 

Methods for the optimization of chromatographic selectivity can roughly be 
divided into simultaneous, sequential and interpretive procedures’. In simultaneous 
(or “grid search”) procedures, a (large) number of chromatograms are recorded ac- 
cording to a pre-planned experimental design (“grid”) and the optimum is identified 
as the best chromatogram obtained. In sequential procedures (e.g., Simplex optimi- 
zation), the optimum is approached in a stepwise manner. A minimum number of 
chromatograms is recorded and the resulting data are used to establish conditions 
for a subsequent experiment that is expected to be closer to the optimum. 

Both categories of optimization procedures suffer from the large number of 
experiments that are required to locate the optimum (see Table I). Typically, a grid 
search optimization involving two parameters may require about 100 experiments, 
and a typical number for Simplex optimization is 2540*. Such a large number of 
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experiments is unattractive for the optimization of the selectivity in reversed-phase 
liquid chromatography (RPLC) for two reasons: (1) the time required for equili- 
brating the system and recording a chromatogram is typically about 30 min; and (2) 
some of the most relevant parameters (e.g., the mobile phase pH) are difficult to 
control automatically in small steps over a wide range. 

The reason why so many experiments are required for the optimization of the 
selectivity in chromatography is the complexity of the response surface, which de- 
scribes the variation of the quality of the chromatogram (“optimization criterion”) 
as a function of the parameters considered. A typical response surface may contain 
a number of maxima (local optima). Only one of these represents the true (global) 
optimum. For several reasons’, the global optimum should be the aim of optimiza- 
tion procedures. Because of the complexity of the response surface, the application 
of a simultaneous optimization method requires a fine grid and hence a large number 
of experiments to locate the global optimum. The result of a sequential optimization 
procedure is likely to be one of the local optima. 

In order to locate the global optimum with a small number of experiments 
(typically between 5 and 15), a number of procedures have been developed specifically 
for the optimization of chromatographic selectivity. These methods can be classified 
as interpretive methods. By definition, interpretive methods are those which: 

(1) interpret a chromatogram in terms of the retention times of the individual 
solutes; 

(2) describe the retention surface of each individual solute with some kind of 
model; 

(3) use this model for the retention surfaces and a suitable optimization cri- 
terion to calculate the response surface; and 

(4) locate the optimum on the response surface. 
The first of these steps greatly increases the complexity of the optimization 

procedure, as is indicated in Table I. Not only are the retention times of the peaks 
in each chromatogram required, but also the order in which the peaks appear is 
relevant for establishing the retention surfaces of the individual solutes. The peaks 
obtained for a particular solute need to be assigned the same label or number in each 
chromatogram, which implies that peaks need to be recognized (but not identified) 
in each chromatogram. This problem has recently received much attention, especially 
in connection with RPLC3, and will not be discussed further in this paper. 

TABLE I 

SUMMARY OF METHODS FOR OPTIMIZING CHROMATOGRAPHIC SELECTIVITY 

Characteristic Procedure 

Simultaneous Sequential Interpretive 

Required number of experiments 
Optimum found 
Complexity of method 
Accuracy of optimum 

Very large 
Global 
Low 
Low 

Large 
Local 
Moderate 
High 

Small 
Global 
High 
Variable* 

l The accuracy of the predicted optimum is the subject of this paper. A high accuracy may be 
obtained with an iterative procedure (see below). 



SELECTIVITY OPTIMIZATION IN RPLC 119 

The second step in the above series is the most critical. Interpretive methods 
owe their existence to the observation that retention surfaces of individual solutes 
are much simpler than the response surface of the entire mixture and may therefore 
be described adequately by some kind of model. This model may be a (set of) math- 
ematical equations or (for one-parameter optimization problems) a graphical 
relationship. Alternatively, the retention surface may be approximated by linear in- 
terpolation between the experimental data points. 

If the model provides a perfect description of the true retention surface, then 
the calculation of the response surface (step 3 above) and the location of the true 
(global) optimum (step 4) are almost trivial. Unfortunately, such perfect models do 
not exist and therefore the reliability and the accuracy of the optimum that results 
from an interpretive optimization method is determined by the accuracy with which 
the true retention surfaces are described by the model. 

One way to improve the accuracy of the predicted optimum is to use iterative 
methods. These are interpretive methods, in which the predicted optimum is verified 
by a new experiment (at or around the location of the predicted optimum) and the 
resulting data are used to improve the model and to calculate a new optimum. 

In this work we investigated the description of the retention surface in RPLC 
using ternary and quaternary mobile phase mixtures. Several mathematical models 
were used in attempts to describe the retention surfaces within experimental error. 
The practical consequences of deviations between the models and the true retention 
surfaces are demonstrated using simulated chromatograms. 

TERNARY MOBILE PHASE MIXTURES 

Experimental data for ternary mobile phases were taken from the compilation 
in ref. 4. Practical optimization processes should focus on mobile phase mixtures that 
yield roughly optimal capacity factors (e.g., 1 < k < 10). Hence, interest is limited 
to solvents within a small range of eluotropic strengths (see Table II), i.e., to a narrow 
band in the triangle representing all possible ternary mixtures. Fig. 1 illustrates the 
experimental locations that were considered for mixtures consisting of water, meth- 
anol and tetrahydrofuran (THF). The solvent compositions are given in Table II, 

TABLE II 

COMPOSITION AND ELUOTROPIC STRENGTH OF MOBILE PHASE MIXTURES CON- 
SIDERED FOR THE SYSTEM WATER-METHANOL-THF 

Data point 
No. 

Wafer 

lx) 

Methanol 

(%) 

THF 

(Xi 

Eluotropic 

strength* 

1 40 60 0 60 

2 30 70 0 70 

3 50 25 25 65 

4 40 30 30 78 

5 60 0 40 65 

6 50 0 50 81 
7 35 65 0 65 

8 40 45 15 69 

l Expressed as the corresponding percentage of methanol. 
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water 

/ \ 
MeOH THF 

Fig. 1. Experimental data points considered for the system water-methanol-THF. Experimental data 
were taken from ref. 4. See also Table II. MeOH = methanol. 

together with the eluotropic strength expressed as the corresponding percentage of 
methanol (see refs. 5 and 6). In Table II 1% of methanol was assumed to correspond 
to 0.62% of THF6. 

The experimental data for the logarithm of the capacity factor can be described 
by a quadratic equation4: 

Ink = A, cp: + A, cpf + B, cpm + Bt (P, + C + D (pm q, (1) 

where (P,,, is the volume fraction of methanol in the mobile phase and (p, is the volume 
fraction of THF. A,, A,, B,, B,, C and D are the six coefficients of the quadratic 
expression, the values of which will be dependent on the solute. If six experimental 
capacity factors are available, then the coefficients can be determined and it is in 
principle possible to calculate the capacity factors at other compositions. For ex- 
ample, the first six data points in Table II may be used to calculate the coefficients 
of eqn. 1. This could be done for 30 solutes using the data in ref. 4. Using the 
coefficients thus obtained, the retention data at points 7 and 8 were calculated and 
compared with the experimental data. For point 7, which is located between and 
close to data points 1 and 2 (see Fig. I), the average deviation between the calculated 
and experimental values for In k was 0.031. This corresponds to an average error in 
the predicted capacity factors of about 3%. However, for point 8, which is not so 
close to the other experimental data points, the average deviation was 0.193, which 
corresponds to an average error in k between the model equation and the experi- 
mental data of about 20%. 

The effect of the large deviations between the model equation and the exper- 
imental data at point 8 is illustrated in Fig. 2, which shows the (simulated) experi- 
mental chromatogram for five selected solutes (thin line) and the predicted chro- 
matogram from the model (thick line). The simulated chromatogram is reconstructed 
by a computer program, using the experimentally observed capacity factors. Ob- 
viously, the two chromatograms are entirely different. 

Fig. 3a shows the response surface for the separation of the five solutes in Fig. 
2, calculated using the retention surfaces for the individual solutes, which were cal- 
culated from the retention data at the first six data points. The response surface 
shows the variation of a selected optimization criterion, representing the quality of 
the separation, as a function of the parameters in the parameter space. The criterion 



SELECTIVITY OPTIMIZATION IN RPLC 121 

tl-0 0 2 4 
k- 

Fig. 2. Calculated (thick line) chromatogram at point 8 using the quadratic model of eqn. 1 fitted through 
the first six data points. The thin line shows a (simulated) experimental chromatogram. Solutes: 1 = 
anisole; 2 = o-cresol; 3 = N-methylaniline; 4 = p-nitroacetophenone; 5 = 3-phenylpropanol. Mobile 

phase: water-methanol-THF (40:45:15). 

THF 

water MeOH 

THF 

water MeOH 

Fig. 3. (a) Response surface for the five solutes in Fig. 2 in the triangle shown in Fig. 1, calculated from 
the retention surfaces of the individual solutes using the quadratic model of eqn. 1 fitted trough the first 
six data points. Deviations between the experimental response and the calculated response are indicated 
for points 7 and 8. Crosses indicate data points not included in establishing the model. (b) As (a), but 
now with the quadratic model fitted through seven data points (l-6 and 8). Error bars may be observed 
for data point 7 (not included) and several other data points. 
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used in Fig. 3 is the time-corrected resolution product’. This criterion is based on 
the calibrated normalized resolution product (r*) of Drouen et af.‘: 

r’ = i (R,/&) 
i=O 

(2) 

where R, is the resolution between two successive peaks in the chromatogram and 
RS the average resolution for all pairs of successive peaks. Both the product and the 
average are taken from i = 0 (the zeroth peak being a hypothetical peak at t = to) 
to i = n (where n is the number of peaks in the chromatogram). The time-corrected 
resolution product is 

In r* 
rz, = exp ~ ( >I t,, 

n 

where t,, is a measure of the required analysis time and n is again the number of 
peaks. 

In Fig. 3a, the actual response calculated from the experimental capacity fac- 
tors is indicated at the locations of the six points in Fig. 1. The bold dots are located 
above the response surface (i.e., the predicted response is lower than the experimental 
response). Open circles represent response values below the predicted surface. A cross 
indicates the points that were not included in fitting the model. The difference be- 
tween the actual (experimental) response at points 7 and 8 and the predicted response 
is indicated by vertical error bars. It is seen that a smooth response surface is pre- 
dicted in the experimental range, but that extrapolation outside this area suggests 
that the location of the global optimum is at much higher concentrations of organic 
modifier. 

It can be concluded from Figs. 2 and 3a that an optimization procedure in 
which (1) experimental data are obtained at the locations of the first six points in 
Table II (or Fig. 1) and (2) the retention surfaces are fitted by the quadratic model 
of eqn. 1 is not sufficient accurate to predict the location of the optimum. This con- 
clusion is not only valid for the example involving five solutes, but may be extended 
to the entire set of 30 solutes of ref. 4 (see Table III). We also fitted the model 
equations to several other selections of six data points from Fig. 1, but the description 
of the two remaining data points was always much worse than in the situation de- 
scribed above. Therefore, in order to improve this situation, either the number of 
experiments needs to be increased or a better model should be used to describe the 
retention surfaces. 

REGRESSION ANALYSIS 

As point 8 appears to be badly described by the model if only six data points 
are available, it is logical to “obtain” additional experimental data at this location. 
The average deviation between the quadratic model and the experimental data using 
seven data points (l-6 and 8) to establish the six coefficients in eqn. 1 is illustrated 
in Table III (last column). 
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Table III shows that the large deviation for point 8 is reduced by a factor of 
about 3. However, the errors are now distributed more evenly over the entire param- 
eter space and the first six data points, which were by definition described exactly by 
the mode1 through six points, now show average deviations that are typically a few 
percent, but up to about 8% (in terms of k) for data point 3. Fig. 4 shows examples 
of (simulated) experimental and calculated chromatograms for the same solutes as 
in Fig. 2 at the compositions of data points 8, 3, 2 and 4 (Fig. 4a-d, respectively). 

Fig. 4a shows that the prediction of the chromatogram at point 8, although 
better than in Fig. 2, is still unacceptable for optimization purposes. At point 3, 
where the average deviation between the mode1 and the experimental data is about 
8%, we see that the elution order is predicted correctly by the mode1 and that the 
baseline separation predicted by the mode1 can indeed be obtained for all solutes in 
practice (see Fig. 4b). Nevertheless, there are considerable differences in retention 
times (k values) between the predicted and the experimental chromatograms. In fact, 
Fig. 4b represents a fortuitous example, as is demonstrated in Fig. 4c. This figure, 
showing the calculated and experimental chromatograms at point 2, yields only 
minor deviations between the predicted and experimental capacity factors (the av- 
erage deviation is 2.9% at point 2). However, the mode1 predicts solutes 1 and 5 to 
be reasonably separated, whereas solutes 2 and 3 are expected to co-elute. In practice, 
solutes 1 and 5 overlap completely and solutes 2 and 3 are separated to the baseline. 
Finally, Fig. 4d shows that at point 4, where the average deviation is 0.3% in terms 
of k, the mode1 yields a perfect prediction of the experimental chromatogram. 

It appears from Fig. 4 that in order to use model equations for the retention 
surfaces for optimization purposes, deviations between the mode1 and the experi- 
mental data of a few percent cannot be accepted (Fig. 4~). The accuracy of the mode1 
needs to be (much) greater than 1% to yield reliable predictions of the optima1 chro- 
matographic conditions (Fig. 4d). This conclusion should be seen in the perspective 
of possible experimental errors in the determination of capacity factors. A reasonable 

TABLE III 

AVERAGE DEVIATIONS ( x 100) BETWEEN THE CALCULATED AND EXPERIMENTAL VAL- 
UES FOR In k USING THE QUADRATIC MODEL OF EQN. 1 TO DESCRIBE THE RETENTION 

SURFACES 

Thirty solutes for which data are available in ref. 4 were included in the calculations. Data points refer 
to Table II. 

Data poinr No. of data points included 
No. 

6 7 

- 1.3 
- 2.9 
- 8.2 
- 0.3 
- 2.9 
- 0.6 
3.1 1.3 

19.3 7.2 
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a) 

Jo 0 k-2 0 2 k- 4 

0 k-3 0 k-2 

Fig. 4. Calculated (thick line) chromatogram at points 8, 3, 2 and 4 using the quadratic model of eqn. 1 
fitted through seven data points (1-6 and 8). The thin lines show (simulated) experimental chromatograms. 
Solutes as in Fig. 2. Mobile phases: (a) water-methanol-THF (40:45:15) (point 8; average deviation for 
all solutes 7.2%); (b) water-methanol-THF (50:25:25) (point 3; average deviation 8.2%); (c) water-meth- 
anol (30:70) (point 2; average deviation 2.9%); (d) water-methanol-THF (40:30:30) (point 4; average 
deviation 0.3%). 

estimate for the experimental error in terms of k is 1% (see also ref. 4). A more 
accurate determination of k would require considerable extra precautions. Therefore, 
we should aim to describe the data within experimental error. 

Fig. 3b shows the response surface obtained for the five solutes in Fig. 2, now 
calculated using the retention surfaces fitted through seven data points (data point 
7 was not included, as is indicated by a cross in the figure). Error bars may also be 
observed for other points in this figure, but the most striking feature is the vastly 
different overall appearance of the response surface. This underlines the sensitivity 
of interpretive optimization procedures to slight alterations in the model fitted 
through the retention surfaces. Moreover, the vast differences between Fig. 3a and 
b are indicative of the fact that whereas an accurate description of the response 
surface within the experimental parameter space is difficult, extrapolations outside 
the experimental range are tentative at best. 

In order to investigate the effect of additonal data points on the accuracy of 
the description of the retention surfaces by a quadratic model, we referred to the 
ternary system water-methanollacetonitrile. The locations of the available experi- 
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water 

f \ 
MeOH ACN 

Fig. 5. Experimental data points considered for the system water-methanol-acetonitrile. Experimental 
data were taken from ref. 4. See also Table IV. ACN = acetonitrile. 

mental data in a limited part of the triangle are illustrated in Fig. 5 and Table IV. 
In Table IV, 1% of methanol was assumed to correspond to 0.78% of acetonitrile6. 

Table V shows the average deviations observed between the quadratic model 
of eqn. 1 and the experimental data at the 12 data points shown in Fig. 5 and Table 
IV. The number of data points included in the regression analysis is increased pro- 
gressively from 7 to 12 in the table. Again, the average deviations could not be 
reduced by selecting another set of seven data points. It is shown that the average 
deviations are generally larger for data points that are not included in the regression 
analysis (typically lo-30%) than for data points that are included (typically 10% or 
less). The observation in Table III that the errors are distributed more evenly over 
the entire parameter space when more experimental data points are added to the 
model is underlined in Table V. It is obvious from Table V that the addition of more 
data points does not lead to a description of the data that is sufficiently accurate in 
the light of the conclusions obtained from Fig. 4. 

TABLE IV 

COMPOSITION AND ELUOTROPIC STRENGTH OF MOBILE PHASE MIXTURES CON- 
SIDERED FOR THE SYSTEM WATER-METHANOL-ACETONITRILE 

Data point Waler Methanol Acetonilrile Eluotropic 

No. 

I 
2 

3 

4 

5 

6 
7 

8 
9 

10 
II 
12 

(%I (%i (s’) 

40 60 0 

30 70 0 

20 80 0 

60 0 40 

50 0 50 

40 0 60 

40 30 30 

40 15 45 

40 45 15 

50 25 25 

50 37.5 12.5 

30 52.5 17.5 

* Expressed as the corresponding percentage of methanol. 

strength* 

60 
70 

80 

51 
64 

77 
68 

73 
64 
57 

54 
75 
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TABLE V 

OBSERVED AVERAGE DEVIATIONS (x 100) IN In k BETWEEN THE QUADRATIC MODEL 
(EQN. 1) AND EXPERIMENTAL DATA FROM REF. 4 FOR THE SYSTEM WATER- 
METHANOL-ACETONITRILE FOR 49 SOLUTES 

The number of data points included in the regression analysis increases in the table. 

n* Data point No. 

1 2 3 4 5 

I 3.1 6.4 2.8 2.0 
8 5.0 5.2 2.3 1.6 
9 7.1 4.8 2.1 1.5 10 11.0 6.6 1.2 6.2 

11 11.6 6.2 1.5 6.8 

; 1; ;i~~r:,~~,::i 

12 13.3 5.9 4.0 1.9 6.6 9.6 8.2 20.1 6.1 18.3 6.5 11:o 

l First n data points in the table were included in the regression analysis. 

ALTERNATIVE MODELS 

We have concluded above that the prediction of the response surface using the 
quadratic model cannot be improved sufficiently by adding more experimental data 
points. The logical conclusion then is that a model is required which describes the 
experimental retention data more accurately, preferably within experimental error. 
Several different mathematical expressions have been fitted to the data for the 
water-methanol-THF system in order to try and find a more accurate description. 
All of these models are based on some kind of physical picture for the chromato- 
graphic process, as described in the original literature. To allow a fair comparison 
with eqn. 1, the different alternative models were all used in the form of equations 
with six coeficients. 

Reciprocal model 
Plotting l/k instead of In k against composition in RPLC has been suggested 

by McCann et al.*. The resulting plots yield slightly curved lines for binary mixtures. 
Therefore, a quadratic model analogous to that described by eqn. 1 has been fitted 
to the data in terms of l/k: 

l/k = A, corn’ + A, cpt2 + Bm (urn + Bt (~1 + C + D an (PI (4) 

Extended linear model 
The retention vs. composition lines in binary mixtures over limited ranges of 

composition may be accurately described by a straight lineg,lO. Eqn. (1) reduces to 
a quadratic curve if either (P,,, or cpt is zero (binary mixtures) or if the ratio IJI,,,/c~, is 
held constant (pseudo-binary mixtures). An equation that yields a straight line for 
both binary and pseudo-binary mixtures is 

(5) 
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where $ is the total volume fraction of solvents ($ = (P,,, + cp,) and R is a ratio 
defined as 

Logarithmic model 
An extended version of the logarithmic model of Lu and Lu” for ternary 

mixtures may be formulated as 

Ink = A + By,,, + Ccp, + Dln(1 + Ecp, + F(p,) (7) 

We were not able to fit this model, nor various similar equations involving a logarith- 
mic function, to our data. It appears that over limited ranges of eluotropic strength 
the linear and logarithmic contributions to In k are not sufficiently different for the 
numerical process to converge. 

Piecewise linear interpolation 
The retention surfaces can be approximated by piecewise linear interpolation. 

For example, the retention data at point 7 can be estimated from those at points 1 
and 2, and the retention data at point 8 from points 1 and 4 (see Fig. 1). An important 
aspect of linear interpolation is that the description of the retention data at the 
experimental locations remains exact if additional experiments become available. We 
have seen above that this is not the case if a model equation (e.g., the quadratic eqn. 
1) is used, as was demonstrated in Table V, We shall return to this aspect later. 

Table VI summarizes the results obtained with the different models. It is seen 
that the average deviations between the model and the experimental data do not vary 
a great deal between the different models, and that in general none of the above 
models provides a description of the retention surfaces to within the required accu- 
racy of 1% or better. 

TABLE VI 

AVERAGE DEVIATIONS ( x 100) BETWEEN THE CALCULATED AND EXPERIMENTAL VAL- 
UES FOR In k USING VARIOUS MODELS TO DESCRIBE THE DATA 

All solutes for which data are available in ref. 4 have been included in the calculations. Data points refer 
to Table II. 

Model Eqn. n* Data poinl No. 

I 2 3 4 5 6 7 8 

Quadratic , 6 _ _ _ _ _ - 3.1 19.3 
Quadratic 1 7 1.3 2.9 8.2 0.3 2.9 0.6 7.3 7.2 
Reciprocal 46- - - - - - 4.9 17.9 
Reciprocal 4 7 2.3 2.2 10.4 0.2 3.7 0.3 4.9 17.9 
Extended linear 5 7 5.0 0.0 0.0 9.9 1.6 3.3 2.8 13.3 
Linear interpolation** - - - - - - - - 2.8 23.7 

l Number of data points used to model the retention surfaces. 
l * Data at point 7 can be found from a linear interpolation between points 1 and 3. Point 8 can be 

found from points 1 and 4. 
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QUATERNARY MOBILE PHASE MIXTURES 

A convenient way to create quaternary mobile phase mixtures for RPLC is to 
combine variable proportions of three isoeluotropic binary mixtures12. This has the 
effect that all resulting mixtures may also be expected to be isoelutropic, i.e., give rise 
to roughly the same capacity factors. Such a strategy has been applied for optimi- 
zation purposes by Glajch et al. l 2. The composition of isoeluotropic quaternary mix- 
tures can again be represented by a triangle, in which the isoeluotropic binary mix- 
tures are located at the corners and identified by bars above the abbreviations for 
the modifiers (e.g., methanol). This design is illustrated in Fig. 6. 

(2.5)j 

Fig. 6. Experimental design involving isoeluotropic binary (vertices), ternary (edges) and quaternary 
(centre) mobile phase mixtures for RPLC. The figures indicate the observed average deviation between 
the experimental data and the model of eqn. 8 in terms of In k. 

The data of Glajch et all2 may again be fitted to a quadratic expression, 
similar to eqn. 1: 

where @J,,, and Q$ now represent the volume fractions of the isoeluotropic binary 
mixtures of methanol and water and THF and water, respectively. Data for nine 
substituted naphthalenes are available from ref. 12. The resulting average deviations 
are indicated in Fig. 6. The observed deviations are small for the binary mixtures on 
the vertices of the triangle, a few percent for the ternary mixtures along the sides and 
up to 6% for quaternary mixtures in the centre. A figure of 6% was also reported 
by D’Agostino et a1.13 for the description of retention data in (non-isoelutropic) 
quaternary mixtures. This implies that once again the accuracy of the description is 
insufficient for optimization purposes (see Fig. 4). However, the situation is slightly 
more favourable than is indicated by the data in Fig. 6. Fig. 7 shows the retention 
surfaces for two of the solutes. Clearly, these are smooth surfaces. The deviations 
between the model and the experimental data are indicated by vertical bars. For the 
two solutes shown in Fig. 7, and also for the other six solutes, the model predicts k 
values that are slightly too high for all three ternary mixtures and too low for the 
quaternary mixture. This implies that deviations from the model will be systematic 
and that small errors in the predicted absolute retention times (k values) will be 
levelled out to some extent when it comes to relative retentions (a values). 

Fig. 8 shows the calculated chromatogram (predicted from the model) and the 
(simulated) experimental chromatogram for the quaternary mixture in the centre of 
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MeOH ACN 

- 
THF 

/’ y 

MeOH ACN 

Fig. 7. Retention surfaces for 2-naphthyl methyl sulphone (solute 2) and I-nitronaphthalene (solute 5) in 
the parameter space of Fig. 6 calculated using eqn. 8. Deviations between the mode1 equation and the 
experimental data are indicated. Bold dots are located above the surface; open circles are located under- 
neath. 

f 0 t=o 5 k- 10 

Fig. 8. Calculated (thick line) chromatogram at the quarternary mobile phase composition in the centre 
of Fig. 6 using the quadratic model of eqn. 8 fitted through all seven data points. The thin line shows a 
(simulated) experimental chromatogram. Solutes: 1 = I-acetaminonaphthalene; 2 = 2-naphthyl methyl 
sulphone; 3 = 2-hydroxynaphthalene; 4 = I-acetylnaphthalene; 5 = I-nitronaphthalene; 6 = 2-meth- 
oxynaphthalene; 7 = naphthalene; 8 = I-naphthyl methyl sulphide; 9 = I-chloronaphthalene. Mobile 
phase: water-methanol-THF-acetonitrile (49:21:13:17). 
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MeOH 

Fig. 9. Response surface calculated from the coefficients in Table VII for the solutes shown in Fig. 8. The 
deviations between the true (experimental) response and the calculated surface are indicated. Bold dots 

are located above the surface; open circles are located underneath. 

the triangle. It can be seen that all components of the mixture elute slightly later in 
practice than predicted by the model. Again, these small differences in terms of k 
values may be significant in terms of resolution, as is evident in Fig. 8 for solutes 6 
and 7. 

Fig. 9 shows the response surface obtained for the nine solutes in Fig. 8. Con- 
siderable error bars are observed for the quaternary mixture and for the ternary 
mixture of THF, acetonitrile and water. The experimental response in the 
methanol-water binary mixture is located just below the response surface. It is ob- 
vious that the accuracy of the quadratic model is again insufficient for optimization 
purposes. 

Table VII lists the coefficients obtained for the nine solutes in Fig. 8 using eqn. 
8 to model the retention surfaces. 

TABLE VII 

COEFFICIENTS OF EQN. 8 DESCRIBING THE RETENTION SURFACES OF THE SOLUTES IN 

FIG. 8 

Solute Coeficien t 2A, + 2A, + D A(p** 

NO.* (eqn. Ila) 

Am A, &I B, C D 

1 0.84 -0.55 -0.90 0.36 -0.38 1.24 1.82 0.22 
2 0.39 0.03 -0.88 -0.29 0.24 0.56 1.40 0.25 
3 0.37 -0.55 -0.47 1.15 0.29 1.51 1.15 0.28 
4 0.34 0.04 -0.55 -0.16 1.02 0.79 1.93 0.22 
5 0.22 -0.10 -0.44 0.12 1.33 1.39 1.63 0.23 
6 0.22 -0.22 -0.34 0.23 1.51 1.20 1.20 0.27 
7 0.37 -0.22 -0.52 0.31 1.55 1.34 1.64 0.23 
8 0.13 -0.24 -0.17 0.21 1.93 1.26 1.04 0.29 
9 0.14 -0.54 -0.16 0.38 2.06 1.16 0.36 0.50 

l For solute identification see Fig. 8. 
l * Ean. Ila. 



SELECTIVITY OPTIMIZATION IN RPLC 131 

PIECEWISE LINEAR INTERPOLATION 

We have seen above that neither the addition of extra data points nor the use 
of alternative model equations will lead to a description of the retention surfaces that 
is sufficiently accurate to allow the application of interpretive optimization proce- 
dures with fixed experimental designs. We also mentioned above that when the re- 
tention surface is approximated by linear interpolation between data points, the effect 
of additional data becoming available will be (1) to yield an exact description of the 
retention surfaces (and hence an exact prediction of the response value) at each ex- 
perimental location (assuming the absence of experimental error) and (2) to increase 
the accuracy of interpolation. 

It can easily be shown7 that the error caused by linear interpolation of data 
points along a retention surface that is more accurately described by a quadratic 
equation (e.g., eqn. 1) is largest in the middle between two data points and amounts 
to 

d = 1/4(A,,, AC& + A, Acppt” + D Acp, Acp,) (9) 

where d is the difference between the value of In k obtained by linear interpolation 
and the value obtained using a quadratic equation that is exact for the existing data 
points. In eqn. 9 Acp, and Atp, are the distances between the existing data points in 
terms of the two composition parameters (P,,, and cpt. 

We can use an equation similar to eqn. 9 to investigate the possibility of using 
piecewise linear interpolation for the description of the retention surfaces for quat- 
ernary mobile phases in Table VII. For example, if we were to approximate the 
complete triangle with a series of smaller equilateral triangles, the equivalent expres- 
sion for the deviation between a quadratic expression and a planar triangle through 
three data points becomes for the centre of the triangle 

d = 1/9(2A, A& + 2A, Aipt” + D Aq, Acp,) (10) 

where Aq, and Aqi are now the lengths of the sides of the triangle in terms of (P,,, 
and qt, and with Acp, = Acp, = Aq we find 

Acp = 3 Jd (2A, + 2A, + D)- “’ (11) 

If we tolerate a deviation of 0.01 in terms of In k (about a 1% variation in k), then 

Acp = 0.3(2A, + 2A, + D)-1’2 Wa) 

In Table VII the values for Acp calculated from eqn. lla are listed for the nine re- 
tention surfaces. It can be seen that for solute 9 the entire retention surface can be 
described to within 1% if the triangle is divided into four smaller ones, each half the 
original size. This may be achieved with only six data points (Fig. 10a). For the eight 
remaining solutes the required size of the triangle is about one quarter of the initial 
size. This would require 15 data points for the entire triangle. 
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=),A. b, ,4A 
Fig. 10. (a) Possible six-point initial design for the optimization of quaternary mobile phase mixtures for 
RPLC. The parameter space (triangle) is divided into four parts. (b) As (a), but with three additional 
experiments to improve the accuracy of prediction. 

A final remark concerning piecewise linear interpolation is that we have been 
discussing maximum errors, for instance the deviation between the model and the 
quadratic surface in the centre of a triangle. Anywhere else in the triangle the devia- 
tions will be smaller, so that the average deviation throughout the entire parameter 
space is much smaller. 

ITERATIVE OPTIMIZATION PROCEDURES 

Piecewise linear interpolation has been suggested by Schoenmakers et a1.14 and 
by Drouen and co-workers7*’ 5 as part of iterative optimization procedures. In such 
procedures, a minimum number of experimental data are collected. These data are 
used to make a first prediction of the location of the optimum. The next experiment 
is then performed at (or close to) the optimum. The additional data point is used to 
make a new prediction of the optimum and to establish the location of the next 
experiment, and so on. The main advantage of such a procedure is that the accuracy 
of the prediction is verified as part of the procedure and improved during each it- 
eration cycle. Drouen et al.’ 5 described the application of an iterative procedure for 
optimization of a quaternary mobile phase composition in RPLC. We shall discuss 
below an example of a procedure that combines an initial fixed experimental design 
with an iterative approach to the optimum. 

If piecewise linear interpolation is used for the optimization of quaternary 
mobile phase mixtures for RPLC, then an initial design of six data points may be 
used to divide the full triangle of Fig. 6 into four smaller ones (see Fig. 10a). Ac- 
cording to eqn. 10, the maximum interpolation error is then (with dq,,, = Acp, = 

0.5) 

d = l/36(2& + 2A, + D) (lOa) 

Using the coefficients in Table VII, we expect the deviations between the calculated 
and experimental values of k to be of the order of 335% (in the centres of the four 
triangles). This is not sufficient to predict the optimum composition accurately (see 
Fig. 4). However, if it can be decided in which of the four triangles the optimum is 
located, then a further three experiments will allow this triangle in its turn to be 
divided into four smaller ones, and the accuracy of the prediction to be increased to 
within 1%. This is illustrated in Fig. lob. The process may be repeated to increase 
further the accuracy of the predicted optimum. 
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As an alternative to piecewise linear interpolation, non-linear models may be 
used to describe parts of the parameter space with greater accuracy, as was suggested 
by Lankmayr and Wegscheider’ 6. 

CONCLUSIONS 
7 ---_. 

In order to make reliable predictions of optimum mbbile phase compositions-‘-: 
in interpretive optimization meth-ads, the retention data for the individual solutes. 
need to be known with an accuracy of greater than 1%. 

Quadratic equations that describe the (logarithm of the) capacity factor as a 
function of composition do not provide the required accuracy. This situation cannot 
be improved by collecting more experimental data points, nor by using any of various 
alternative model equations. 

A more accurate description of the retention surfaces may be obtained from 
a piecewise linear (or non-linear) interpolation between the available data points. 

Piecewise interpolation in combination with iterative interpretive optimization 
procedures appears to be the most promising approach. 
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